Summary of Study ST003035

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001888. The data can be accessed directly via it's Project DOI: 10.21228/M8P728 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003035
Study TitleCentral Transcriptional Regulator Controls Growth and Carbon Storage under High Light Stress in Photosynthetic Microalgae Model Strains
Study TypeAlgae
Study SummaryCarbon capture efficiency and biochemical storage are some of the primary drivers of photosynthetic productivity and by extension crop yield. To elucidate the mechanisms governing yield phenotypes and carbon allocation regulatory elements, we selected two microalgae strains as simplified models of photosynthetic crops. The Picochlorum celeri TG2 isolate is one of the fastest growing algae and in this work is juxtaposed to a closely related, slower growing, isolate, TG1, of the same species with less than 2% genomic divergence. Through the application of a comprehensive systems biology light-stress response study, we observed a stark difference in carbon assimilation and storage rates, with the slower growing isolate accumulating almost three times the amount of starch compared to the fast-growing isolate. We characterized the carbon storage rates and allocation dynamics, with metabolic bottlenecks, and transport rates of intermediates underlying the variations in growth and composition in high light using instationary 13C-fluxomics experiments. High light stress analysis of transcriptomic dynamics during acclimation of the strains from low to high light identified a widespread response with up to 73% the annotated gene set significantly differentially expressed after only 1 hour. Broad transcriptional regulatory control was inferred by a rapid depletion of a global diel-responsive transcription factor closely related to a circadian-regulator in plants, as the single most distinct transcription factor. Transferring this factor to the slower variant increased yield, specific growth rate, and carbohydrate accumulation of the selected engineered strain, providing further evidence for a coordinating regulatory mechanism for this complex phenotype.
Institute
National Renewable Energy Lab
DepartmentBiosciences
LaboratoryLaurens Lab
Last NameLaurens
First NameLieve
Address15013 Denver West Paekway, Golden, CO 80401
Emaillieve.laurens@nrel.gov
Phone+1 720-273-6534
Submit Date2023-12-18
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2024-04-26
Release Version1
Lieve Laurens Lieve Laurens
https://dx.doi.org/10.21228/M8P728
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO003142
Collection Summary:P. celeri strains TG1, TG2, and TG1-MYB99 were adapted to HL intensity (1000 μmol m−2 s−1 PAR) by ensuring chlorophyll concentration was maintained below 0.75 µg/mL for several days prior to any transient labeling experiment. A 2 L volume was inoculated on the day prior to the transient labeling experiment in the SAGE photobioreactor and total organic carbon (TOC) measurements were taken 2 hours before and at the start of the experiment to determine the specific growth rate. OD750 of the cultures were always maintained <0.3 for the transient labeling experiment. The culture was then split equally into 6 photobioreactor positions, each of which served as a time point for the transient labeling experiment. Transient labeling was achieved by turning off the pH control (CO2 supply) and by the addition of NaH13CO3 (Cambridge Isotope Laboratories, Andover, MA) up to a final concentration of 11.76 mM simultaneously with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (Sigma Aldrich, St. Louis) up to a final concentration of 5 mM. NaH13CO3 was preferred to 13CO2 to avoid gas-liquid mass transfer limitations and achieve rapid equilibrium. Preliminary experiments were performed to determine the concentration of NaH13CO3 and HEPES buffer that need to be added simultaneously to achieve a step change from 12C to 13C, maintain pH <7.5, as well as be able to minimize contribution of unlabeled carbon in the labeling dynamics.  Once the 13C pulse was introduced, each identical culture was harvested at different time points, namely 0 (no label pulse), 30, 60, 180, 300, and 600s by rapidly filtering on a 9 cm Fisherbrand glass microfiber filters followed by washing with 15 mL of 0.2 M ammonium bicarbonate in 5% methanol kept in an ice bath and quenching in liquid nitrogen.
Collection Protocol Filename:Sample_Collection_AD.pdf
Sample Type:Algae
  logo