Summary of Study ST001309

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000890. The data can be accessed directly via it's Project DOI: 10.21228/M8ND7K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files
Study IDST001309
Study TitleMetabolite expression in liver after early life exposure to an endocrine disruptor at 240 days postnatal (part-I)
Study TypeMetabolite expression after chemical exposure versus control.
Study SummaryOur early-life environment has a profound influence on developing organs that impact metabolic function and determines disease susceptibility across the life-course. Using a rat model for exposure to an endocrine disrupting chemical (EDC), we show that early-life exposure causes metabolic dysfunction in adulthood and reprograms histone marks in the developing liver to accelerate acquisition of an adult epigenomic signature. This epigenomic reprogramming persists long after the initial exposure, but many reprogrammed genes remain transcriptionally silent with their impact on metabolism not revealed until a later life exposure to a Western-style diet. Diet-dependent metabolic disruption was largely driven by reprogramming of the Early Growth Response 1 (EGR1) transcriptome and production of metabolites in pathways linked to cholesterol, lipid and one-carbon metabolism. These findings demonstrate the importance of epigenome: environment interactions, which early in life accelerate epigenomic aging, and later in adulthood unlock metabolically restricted epigenetic reprogramming to drive metabolic dysfunction.
Institute
Baylor College of Medicine
DepartmentMolecular and Cellular Biology
LaboratoryCenter for Precision Environmental Health
Last NameWalker
First NameCheryl
Address1 Baylor Plaza, Houston, TX, 77030, USA
EmailCheryl.walker@bcm.edu
Phone713-798-8219
Submit Date2020-01-27
Num Groups2
Total Subjects10
Num Males10
Analysis Type DetailLC-MS
Release Date2020-03-11
Release Version1
Cheryl Walker Cheryl Walker
https://dx.doi.org/10.21228/M8ND7K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002178 AN002179 AN002180
Analysis type MS MS MS
Chromatography type HILIC HILIC HILIC
Chromatography system Agilent 6495 QQQ Agilent 6495 QQQ Agilent 6495 QQQ
Column Waters XBridge Amide (100 x 4.6mm,3.5um) Waters XBridge Amide (100 x 4.6mm,3.5um) Phenomenex Luna NH2 (150 x 2.1mm,3um)
MS Type ESI ESI ESI
MS instrument type Triple quadrupole Triple quadrupole Triple quadrupole
MS instrument name Agilent 6495 QQQ Agilent 6495 QQQ Agilent 6495 QQQ
Ion Mode POSITIVE NEGATIVE POSITIVE
Units peak intensity peak intensity peak intensity

MS:

MS ID:MS002025
Analysis ID:AN002178
Instrument Name:Agilent 6495 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:For data acquisition through LC/MS analysis, 10 µL of suspended samples were injected and analyzed using a 6495 triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA) coupled to a HPLC system (Agilent Technologies, Santa Clara, CA) via Multiple reaction monitoring (MRM). Source parameters were as follows: Gas temperature- 250°C; Gas flow- 14 l/min; Nebulizer - 20psi; Sheath gas temperature - 350°C; Sheath gas flow- 12 l/min; Capillary - 3000 V positive and 3000 V negative; Nozzle voltage- 1500 V positive and 1500 V negative. Approximately 8–11 data points were acquired per detected metabolite. The data acquired using Agilent mass hunter software and data was analyzed using mass hunter quantitative analysis software.
Ion Mode:POSITIVE
  
MS ID:MS002026
Analysis ID:AN002179
Instrument Name:Agilent 6495 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:For data acquisition through LC/MS analysis, 10 µL of suspended samples were injected and analyzed using a 6495 triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA) coupled to a HPLC system (Agilent Technologies, Santa Clara, CA) via Multiple reaction monitoring (MRM). Source parameters were as follows: Gas temperature- 250°C; Gas flow- 14 l/min; Nebulizer - 20psi; Sheath gas temperature - 350°C; Sheath gas flow- 12 l/min; Capillary - 3000 V positive and 3000 V negative; Nozzle voltage- 1500 V positive and 1500 V negative. Approximately 8–11 data points were acquired per detected metabolite. The data acquired using Agilent mass hunter software and data was analyzed using mass hunter quantitative analysis software.
Ion Mode:NEGATIVE
  
MS ID:MS002027
Analysis ID:AN002180
Instrument Name:Agilent 6495 QQQ
Instrument Type:Triple quadrupole
MS Type:ESI
MS Comments:For data acquisition through LC/MS analysis, 10 µL of suspended samples were injected and analyzed using a 6495 triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA) coupled to a HPLC system (Agilent Technologies, Santa Clara, CA) via Multiple reaction monitoring (MRM). Source parameters were as follows: Gas temperature- 250°C; Gas flow- 14 l/min; Nebulizer - 20psi; Sheath gas temperature - 350°C; Sheath gas flow- 12 l/min; Capillary - 3000 V positive and 3000 V negative; Nozzle voltage- 1500 V positive and 1500 V negative. Approximately 8–11 data points were acquired per detected metabolite. The data acquired using Agilent mass hunter software and data was analyzed using mass hunter quantitative analysis software.
Ion Mode:POSITIVE
  logo