Summary of Study ST002409

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001549. The data can be accessed directly via it's Project DOI: 10.21228/M8G99R This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002409
Study TitleSpatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract (MS RP positive data)
Study SummaryMost utilization of human diets occurs in the small intestine, which remains largely unstudied. Here, we used a novel non-invasive, ingestible sampling device to probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy subjects. We analyzed 274 intestinal samples and 60 corresponding stool homogenates by combining five metabolomics assays and 16S rRNA sequencing. We identified 1,909 metabolites, including sulfonolipids and novel bile acids. Stool and intestinal metabolomes differed dramatically. Food metabolites displayed known differences and trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract, and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites accounted for the largest inter-subject differences. Interestingly, subjects exhibited large variation in levels of bioactive fatty acid esters of hydroxy fatty acids (FAHFAs) and sulfonolipids. Two subjects who had taken antibiotics within 6 months prior to sampling showed markedly different patterns in these and other microbially related metabolites; from this variation, we identified Blautia species as most likely to be involved in FAHFA metabolism. Thus, in vivo sampling of the human small intestine under physiologic conditions can reveal links between diet, host and microbial metabolism.
Institute
University of California, Davis
Last NameFolz
First NameJake
Address1 Shields Ave
Emailjfolz@ucdavis.edu
Phone7155636311
Submit Date2022-12-16
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-01-04
Release Version1
Jake Folz Jake Folz
https://dx.doi.org/10.21228/M8G99R
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002504
Sampleprep Summary:Extraction is carried out using a bi-phasic solvent system of cold methanol, methyl tert-butyl ether (MTBE), and water. In more detail, cold methanol (225 µL is added to a 5mg tissue sample aliquot, which is placed into a 1.5 mL Eppendorf tube. Then, 750 µL of cold MTBE is added, followed by vortexing for 10 s. and shaking for 6 min. at 4ºC. Phase separation is induced by adding 188 µL of mass spec-grade water. After vortexing for 20 s. the sample is centrifuged at 14,000 rpm for 2 min. The upper organic phase is collected in two 300 µL aliquots for lipid analysis polar layer is collected in two 125 µL aliquots for HILIC analysis. One is stored at -20ºC as a backup and the other is evaporated to dryness in a SpeedVac. Dried extracts are resuspended in acetonitrile.
  logo