Summary of Study ST002922

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001814. The data can be accessed directly via it's Project DOI: 10.21228/M87D9M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002922
Study TitleEffects of DINCH and MINCH on adipocyte metabolism of human SGBS cells.
Study SummaryIn the first part of the project, we investigated the effects of DINCH and MINCH on central carbon metabolism. For this purpose, the human SGBS preadipocyte cell line (Wabitsch et al., 2001) was exposed to DINCH and MINCH at concentrations ranging from 10 nM to 10 µM and compared with cells differentiated with rosiglitazone (adipogenic reference) and without rosiglitazone (undifferentiated control). Analysis of central carbon metabolism showed that MINCH, similar to rosiglitazone, induces lipid accumulation mainly through PPARG-mediated upregulation of the pyruvate cycle. In addition, increased lactate production suggests altered glucose homeostasis induced by MINCH-treatment. Our results suggest that MINCH could potentially lead to a weight-promoting effect, as observed with thiazolidinediones, because of the similarity of the observed changes to the effects of the thiazolidinedione rosiglitazone.
Institute
Helmholtz Centre for Environmental Research
DepartmentMolecular Systems Biology
Last NameEngelmann
First NameBeatrice
AddressPermoserstraße 15, Leipzipg, Saxony, 03418, Germany
Emailbeatrice.engelmann@ufz.de
Phone00493412351099
Submit Date2023-10-04
Raw Data AvailableYes
Raw Data File Type(s)wiff
Analysis Type DetailLC-MS
Release Date2023-11-03
Release Version1
Beatrice Engelmann Beatrice Engelmann
https://dx.doi.org/10.21228/M87D9M
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP003041
Sampleprep Summary:Extraction of intracellular and extracellular metabolites was performed by a 1:1:1 methanol:water:chloroform extraction protocol. For the extraction of intracellular metabolites, the culture medium was removed and the cells were rinsed twice with 1 ml of 0.9% ice-cold NaCl. The rinsing solution was removed, and the metabolism of the cells was stopped by adding 400 µL of MeOH (-20 °C) followed by 400 µL of ice-cold H2O containing 10 µM d6-glutarate. Cells were collected using a cell lifter and 400 µL of chloroform was added. After shaking at 1,400 rpm and 4 °C for 20 min, the extraction mixture was centrifuged at 18,000 g and 4 °C for 5 min. Subsequently, 300 µL volume of the polar upper phase was collected and evaporated to complete dryness. For the extraction of extracellular metabolites, 300 µL of the supernatant was extracted by adding 400 µL MeOH (-20 °C) containing 100 nM MEHP, 100 µL ice-cold H2O containing 40 µM d6-glutarate, and 400 µL chloroform (-20 °C). Subsequent sample preparation was identical to the extraction of intracellular metabolites. Note: After measurement of the samples by LC-MS, the raw AUC values uploaded here were normalized to the internal standard (d6-glutarate, if applicable) and DNA content per well (measured by DAPI fluorescence). After normalization, log2 fold changes were calculated by dividing the normalized peak area from each replicate of each treatment by the normalized peak area from each control. Insulin data were not normalized to DAPI because fold changes were calculated by dividing the intensities of the insulin-stimulated cells by the noninsulin-stimulated cells from each treatment.
  logo