Summary of Study ST001708
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001093. The data can be accessed directly via it's Project DOI: 10.21228/M8DT31 This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST001708 |
Study Title | Oxylipin biosynthesis reinforces cellular senescence through a RAS/p53 feedback loop and allows detection of senolysis |
Study Summary | Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation and many age-related pathologies. By contrast, lipid components of the SASP are understudied. We show that senescent cells activate the biosynthesis of several oxylipins that promote segments of the SASP and reinforce the proliferative arrest. Notably, senescent cells synthesize and accumulate an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. Released 15-deoxy-delta-12,14-prostaglandin J2 is a biomarker of senolysis in culture and in vivo. This and other prostaglandin D2-related lipids promote the senescence arrest and SASP by activating RAS signaling. These data identify an important aspect of cellular senescence and a method to detect senolysis |
Institute | Buck Institute for Research on Aging |
Last Name | Sharma |
First Name | Rishi |
Address | 8001 Redwood Blvd, Novato, CA, 94945, USA |
sharmarishi2004@yahoo.co.in | |
Phone | 5084392367 |
Submit Date | 2021-02-20 |
Raw Data Available | Yes |
Raw Data File Type(s) | d |
Analysis Type Detail | LC-MS |
Release Date | 2021-08-10 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Subject:
Subject ID: | SU001785 |
Subject Type: | Cultured cells |
Subject Species: | Mus musculus |
Taxonomy ID: | 10090 |
Species Group: | Mammals |