Summary of Study ST002937

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001827. The data can be accessed directly via it's Project DOI: 10.21228/M8JQ6C This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002937
Study TitleDeep Metabolic Phenotyping of Newborn Cord Blood Reveals Maternal-Fetal Interactions and Disease Risk
Study TypeUntargeted MS and Targeted MS
Study SummaryMetabolites are small molecules circulating in the mother, placental, and fetal blood that can have a profound effect on a developing fetus (1, 2). Many metabolites from pregnant mothers cross the placenta to provide energy, structural components, essential nutrients, and signals to the developing fetus (3, 4). Issues with proper transmission of metabolites to the fetus, whether through gestational diabetes, placental insufficiency, or other sources can permanently damage the fetus (5-7). However, quantification of many metabolites entering and exiting the fetus are unknown; associations between microbial metabolites in umbilical cords and disease have not been thoroughly investigated; and there remains a lack of quantifiable metabolic effects of some of the most common medications administered during pregnancy and parturition. Here we identified and quantified many metabolites with a gradient between arterial and venous cord blood; we demonstrated that exogenous metabolites in umbilical cords associate with many health outcomes; and we show that medications can profoundly alter the metabolic milieu of the fetus. We greatly expanded the number of metabolites that demonstrate a gradient between arterial and venous blood, indicating absorption by the fetus, including several essential fatty acids. The microbial metabolites 3-indolepropionic acid, hydroxyhippuric acid and others are associated with many newborn diseases. Lastly, we show that exogenous medications like bupivacaine and betamethasone can have a profound impact on newborn metabolic profile. This study is the most comprehensive study of umbilical cord metabolic and disease associations to date. It reveals important aspects of fetal biology, like the reliance on specific essential fatty acid and taurine. It suggests several interventions in pregnant mothers that may help newborn health, including new fatty acids. This study serves as a valuable reference for investigators wishing to better understand the impact of medications on the developing fetus and neonate.
Institute
Stanford University
DepartmentDepartment of Genetics
LaboratorySnyder Lab
Last NameLancaster
First NameSamuel
Address240 Pasteur Dr, BMI bldg 4400, Stanford California, 94305
Emailslancast@stanford.edu
Phone(612)-600-4033
Submit Date2023-08-31
Raw Data AvailableYes
Raw Data File Type(s)wiff, raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-11-10
Release Version1
Samuel Lancaster Samuel Lancaster
https://dx.doi.org/10.21228/M8JQ6C
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004817 AN004818 AN004819 AN004820 AN004821 AN004822
Analysis type MS MS MS MS MS MS
Chromatography type Reversed phase Reversed phase HILIC HILIC None (Direct infusion) None (Direct infusion)
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000 Thermo Vanquish Thermo Vanquish Shimazdu LC-30AD Shimazdu LC-30AD
Column Agilent Zorbax SBaq (50 x 2.1mm x 1.7 um) Agilent Zorbax SBaq (50 x 2.1mm x 1.7 um) Merck SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) Merck SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) None None
MS Type ESI ESI ESI ESI ESI ESI
MS instrument type Orbitrap Orbitrap Orbitrap Orbitrap QTRAP QTRAP
MS instrument name Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap ABI Sciex 5500 QTrap ABI Sciex 5500 QTrap
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE POSITIVE NEGATIVE
Units Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance

Chromatography:

Chromatography ID:CH003640
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Agilent Zorbax SBaq (50 x 2.1mm x 1.7 um)
Column Temperature:60
Flow Gradient:N/A
Flow Rate:0.6 ml/min
Solvent A:0.06% acetic acid in water
Solvent B:0.06% acetic acid in methanol
Chromatography Type:Reversed phase
  
Chromatography ID:CH003641
Instrument Name:Thermo Vanquish
Column Name:Merck SeQuant ZIC-HILIC (100 x 2.1mm,3.5um)
Column Temperature:40
Flow Gradient:N/A
Flow Rate:0.5 ml/min
Solvent A:10 mM ammonium acetate in 50/50 acetonitrile/water
Solvent B:10 mM ammonium acetate in 95/5 acetonitrile/water
Chromatography Type:HILIC
  
Chromatography ID:CH003642
Instrument Name:Shimazdu LC-30AD
Column Name:None
Column Temperature:20
Flow Gradient:N/A
Flow Rate:0.15 ml/min
Solvent A:9:1 Methanol Toluene with 10 mM ammonium acetate
Solvent B:N/A
Chromatography Type:None (Direct infusion)
  logo