Summary of Study ST003039

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001891. The data can be accessed directly via it's Project DOI: 10.21228/M88X46 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003039
Study TitleA Non-Targeted Metabolomics Comparative Study on Plasma of Pfizer and Sinopharm COVID- 19 Vaccinated individuals, Assessed by (TIMS-QTOF) Mass Spectrometry.
Study SummaryCOVID-19 is a contagious globally threatening infectious disease that accounted for an ongoing pandemic that manifested in multi-organs diseases and failures. The current study aimed to investigate the effectiveness of the Pfizer and Sinopharm vaccines in relation to metabolomic alterations and their association with immune pathways. The study employed a cross-sectional design and utilized an untargeted metabolomics-based approach. Plasma samples were collected from three groups: non- vaccinated participants, Sinopharm vaccinated participants, and Pfizer vaccinated participants. Comparative metabolomic analysis was performed using TIMS-QTOF, and a one-way ANOVA test was conducted using MetaboAnalyst Software. Out of the 105 detected metabolites, 72 showed statistically significant alterations (p<0.05) among the different groups. Several metabolites, including neopterin, pyridoxal, and syringic acid, were highly altered in individuals vaccinated with Pfizer. On the other hand, sphinganine, neopterin, and sphingosine were impacted in individuals vaccinated with Sinopharm. These metabolites could potentially serve as biomarkers for vaccine efficacy. Furthermore, both Pfizer and Sinopharm vaccinations were found to affect sphingolipid metabolism pathways and histidine metabolism pathways when compared to the control group. The Sinopharm group exhibited altered lysine degradation compared to the control group. When comparing the enriched pathways of the Pfizer and Sinopharm groups, purine metabolism was found to be affected. Additionally, perturbations in tryptophan metabolism and vitamin B6 metabolism were observed when comparing the Pfizer group with both the control and Sinopharm groups. These findings highlight the importance of metabolomics in assessing vaccine effectiveness and identifying potential biomarkers.
Institute
Sharjah Institute for Medical Research
Last NameFacility
First NameCore
AddressM32, SIMR, College of Pharmacy, Health Sciences, University of Sharjah, Sharjah, UAE, Sharjah, 000, United Arab Emirates
Emailtims-tof@sharjah.ac.ae
Phone+971 6 5057656
Submit Date2024-01-02
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2024-01-31
Release Version1
Core Facility Core Facility
https://dx.doi.org/10.21228/M88X46
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004986
Analysis type MS
Chromatography type Reversed phase
Chromatography system Bruker Elute
Column Hamilton Intensity Solo 2 C18 (100 x 2.1 mm, 1.8 um)
MS Type ESI
MS instrument type QTOF
MS instrument name Bruker timsTOF
Ion Mode POSITIVE
Units AU

Chromatography:

Chromatography ID:CH003766
Chromatography Summary:Samples were chromatographically separated by inline reversed-phase chromatography using the Elute HPG 1300 pumps and Elute Autosampler (Bruker, Darmstadt, Germany) with solvent A 0.1% FA in HPLC grade water and solvent B 0.1% FA in ACN. A Hamilton Intensity Solo 2 C18 column (100 mm x 2.1 mm, 1.8µm beads) was maintained at 35C. For metabolomics, 10 µL was injected twice for each sample and eluted using a 30-minute gradient as follows: 1% ACN was held for 2 minutes, ramping to 99% ACN over 15 minutes, held at 99% ACN for 3 minutes before re-equilibrating to 1% ACN for 10 minutes. Flow rates were 250 µL/min for elution and 350 µL/min for re-equilibration.
Instrument Name:Bruker Elute
Column Name:Hamilton Intensity Solo 2 C18 (100 x 2.1 mm, 1.8 um)
Column Temperature:35
Flow Gradient:1%B to 99%B in 15 min
Flow Rate:250 uL/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Chromatography Type:Reversed phase
  logo