Summary of Study ST002469

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001595. The data can be accessed directly via it's Project DOI: 10.21228/M8J13B This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002469
Study TitleMesenchymal stromal cell (MSC) Metabolite MS study
Study TypeUntargeted Metabolite Study
Study SummaryMetabolomics and lipidomics workflows were used to analyze Mesenchymal stromal cell (MSC) metabolites. Metabolite abundances were used to model MSC potency results in IDO and T-cell proliferation assays.
Institute
Georgia Institute of Technology
DepartmentChemistry and Biochemistry
LaboratoryFernandez Lab
Last NameVan Grouw
First NameAlexandria
Address311 Ferst Dr. NW Atlanta, GA 30332
Emailagrouw3@gatech.edu
Phone7072391412
Submit Date2023-02-07
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-02-26
Release Version1
Alexandria Van Grouw Alexandria Van Grouw
https://dx.doi.org/10.21228/M8J13B
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002565
Sampleprep Summary:Approximately one million MSCs were analyzed for each sample. Frozen cell pellets were thawed and washed prior to undergoing a modified Bligh-Dyer extraction to yield two phases. Extraction solvent (2:2:1 chloroform:methanol:water) and glass beads (400-600 µm) were added to cell pellets for extraction and homogenization in a TissueLyser II to 30 Hz for 6 minutes. Samples were then sonicated and centrifuged. Following extraction, 300 µL aliquots from each layer were transferred to new microcentrifuge tubes and solvent was dried using vacuum centrifugation. Dried organic phase samples were re-constituted in isopropyl alcohol, while dried aqueous phase samples were re-constituted in 80% methanol. Re-constitution was followed by sonication, centrifugation, and transfer to liquid chromatography (LC) vials for ultrahigh performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Media samples without cells were also analyzed as blanks to remove any features corresponding to remaining media components on the cells. Ten µL of media was subject to the same Bligh-Dyer extraction as above and extracts were run according to the instrumental methods listed above. A quality control (QC) sample for hydrophilic interaction chromatography (HILIC) and reverse phase datasets was created by pooling 20 µL from each experimental sample. The pooled QC injections were used for drift correction of peak areas. Sample queue was randomized with a mix of samples, QCs, and blanks.
  logo