Summary of Study ST002527

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001627. The data can be accessed directly via it's Project DOI: 10.21228/M8D434 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002527
Study TitleHPLC-MS-MS analysis amino acid levels in PDAC IF samples upon arginase inhibition
Study SummaryTo test the hypothesis that myeloid arginase-1 activity could be responsible for pancreatic ductal adenocarninoma microenvironmental arginine starvation (PMID: 30990168), we generated orthotopic allograft mPDAC tumors in a mouse model with myeloid specific Arg1 knockout (LysM-Cre+/+-; Arg1fl/fl) and control animals (Arg1fl/fl). We also tested this with pharmacological inhibition of arginase-1 with the small-molecule inhibitor CB-1158. We then isolated IF from these tumors at end-stage and measured the levels of amino acids including arginine and ornithine in these samples.
Institute
University of Chicago
Last NameApiz Saab
First NameJuan
Address929 E. 57th St.
Emailjapizsaab@uchicago.edu
Phone7738346506
Submit Date2022-08-05
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-04-13
Release Version1
Juan Apiz Saab Juan Apiz Saab
https://dx.doi.org/10.21228/M8D434
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001627
Project DOI:doi: 10.21228/M8D434
Project Title:Pancreatic tumors activate arginine biosynthesis to adapt to myeloid-driven amino acid stress
Project Summary:Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs to maintain survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors (Sullivan et al., 2019a). Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling study of PDAC metabolism under physiological nutrition. We show that PDAC cells cultured in TIFM, compared to standard laboratory models, adopt a cellular state more similar to PDAC cells in tumors. Further, using the TIFM model we identified arginine biosynthesis as a metabolic adaptation PDAC cells engage to cope with microenvironmental arginine starvation driven by myeloid cells in PDAC tumors. Altogether, these data show that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity and enable the discovery of novel cancer metabolic phenotypes.
Institute:University of Chicago
Last Name:Apiz Saab
First Name:Juan
Address:929 E. 57th St.
Email:japizsaab@uchicago.edu
Phone:7738346506
  logo